3.6 Forced Oscillations and Resonance

In this section, we will talk about the systems with forced oscillations.
We have the differential equation

$$
m x^{\prime \prime}+c x^{\prime}+k x=F(t)
$$

with

$$
F(t)=F_{0} \cos \omega t \quad \text { or } \quad F(t)=F_{0} \sin \omega t
$$

where the constant F_{0} is the amplitude of the periodic force and ω is its circular frequency.

Undamped Forced Oscillations

We set $c=0$ and consider

$$
\begin{equation*}
m x^{\prime \prime}+k x=F_{0} \cos \omega t \tag{1}
\end{equation*}
$$

Discussion:

- By Section 3.4, the complementary function is

$$
x_{c}=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t
$$

where $w_{0}=\sqrt{\frac{k}{m}} \Rightarrow k=w_{0}^{2} m$.

- Assume $w_{0} \neq w$. we want to find a particular solution x_{p} of Eq(1).
- Assume $x_{p}=A \cos \omega t, \quad x_{p}^{\prime \prime}=-A \omega^{2} \cos w t$ then

$$
\begin{aligned}
& m x_{p}^{\prime \prime}+k x_{p}=-A m \omega^{2} \cos w t+k A \cos \omega t=F_{0} \cos w t \\
\Rightarrow & A\left(k-m \omega^{2}\right)=F_{0} \Rightarrow A=\frac{F_{0}}{2}=\frac{F_{0} / m}{2}, \quad \text { the last equation is from the fact that }
\end{aligned}
$$

$$
k=\omega_{0}^{2} m
$$

- Thus

$$
x_{p}=\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}} \cos \omega t
$$

- Therefore the general solution

$$
\begin{aligned}
x(t) & =x_{c}(t)+x_{p}(t)=c_{1} \cos w_{0} t+c_{2} \sin \omega_{0} t+\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}} \cos \omega t \\
\Rightarrow x(t) & =C \cos \left(\omega_{0} t-\alpha\right)+\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}} \cos \omega t
\end{aligned}
$$

- So $x(t)$ is a superposition of two oscillations.

Example 1 Express the solution of the given initial value problem as a sum of two oscillations. Graph the solution function $x(t)$ in such a way that you can identify and label its period.

$$
x^{\prime \prime}+25 x=9 \cos 2 t ; \quad x(0)=0, \quad x^{\prime}(0)=0
$$

Ans: . Find $x_{c} . \quad r^{2}+25=0 \Rightarrow r= \pm 5 i$

$$
x_{c}=C_{1} \cos 5 t+C_{2} \sin 5 t \rightarrow x_{p}^{\prime}=-2 A \sin 2 t
$$

Find x_{p}. Assume $x_{p}=A \cos 2 t$. then $x_{p}^{\prime \prime}=-4 A \cos 2 t$.

$$
\begin{aligned}
& x_{p}^{\prime \prime}+25 x_{p}=(-4 A+25 A) \cos 2 t=9 \cos 2 t \\
& \Rightarrow 21 A=9 \Rightarrow A=\frac{3}{7}
\end{aligned}
$$

- Use the initial value to find $x(t)$

$$
x(t)=x_{c}+x_{p}=C_{1} \cos 5 t+c_{2} \sin 5 t+\frac{3}{7} \cos 2 t
$$

As $x(0)=0, \quad x(0)=C_{1}+\frac{3}{7}=0 \Rightarrow C_{1}=-\frac{3}{7}$
As $x^{\prime}(0)=0, x^{\prime}(t)=-5 c_{1} \sin 5 t+5 c_{2} \cos 5 t-\frac{6}{7} \sin 2 t$

$$
x^{\prime}(0)=5 c_{2}=0 \Rightarrow c_{2}=0 .
$$

Thus $X(t)=-\frac{3}{7} \cos 5 t+\frac{3}{7} \cos 2 t$. which is a sum of two oscillations. to rewrite $x_{\text {c }}$ as the form $x_{c}=C \cos \left(\omega_{0} t-\alpha\right)$

The period T of $x(t)$ is the least common mutiple of the periods of the two oscillations $\frac{2 \pi}{5}$ and $\frac{2 \pi}{2}$, which is
Damped Forced Oscillations 2π.

$$
m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos \omega t
$$

- transient solution $x_{\mathrm{tr}}(t)=x_{c}(t), \quad x_{c}(t) \rightarrow 0$ as $t \rightarrow \infty$.
- steady periodic solution $x_{\mathrm{sp}}(t)=x_{p}(t)$

Example 2 Find the steady periodic solution $x_{\mathrm{sp}} \rightarrow C \cos (\omega t-\alpha)$ of the given equation $m x^{\prime \prime}+c x^{\prime}+k x=F(t)$ with periodic forcing function $F(t)$ of frequency ω. Then graph $x_{\mathrm{sp}}(t)$ together with (for comparison) the adjusted forcing function $F_{1}(t)=F(t) / m \omega$.

$$
_^{\prime \prime}+2 x^{\prime}+26 x=82 \cos 4 t
$$

$$
\begin{array}{ll}
m=1 \\
c=2
\end{array} \quad F_{0}=82
$$

$$
\begin{aligned}
& x_{p}^{\prime}=-4 A \sin 4 t+4 B \cos 4 t \\
& x_{p}^{\prime \prime}=-16 A \cos 4 t-16 B \sin 4 t
\end{aligned}
$$

Then $x_{p}^{\prime \prime}+2 x_{p}^{\prime}+26 x_{p}=-16 A \cos 4 t-16 B \sin 4 t$
ANS: Assume $x_{p}=A \cos 4 t+B \sin 4 t$.

$$
k=26
$$

$$
w=4
$$

$$
+2(-4 A \sin 4 t+4 B \cos 4 t)
$$

$$
+26(A \cos 4 t+B \sin 4 t)
$$

$$
\Rightarrow\left\{\begin{array} { l }
{ = 8 2 \operatorname { c o s } 4 t \quad A } \\
{ - 8 A + 1 0 B = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=5 \\
B=4 .
\end{array} \text { Then } x_{s p}=x_{p}=5 \cos 4 t+4 \sin 4 t .\right.\right.
$$

$$
\begin{aligned}
& \tan \alpha=\frac{4}{5} \\
& \alpha=\arctan \frac{4}{5} \\
& \approx 0.6747
\end{aligned}
$$

Then

$$
x_{s p}=\sqrt{41} \cos (4 t-0.6747)
$$

$$
\begin{aligned}
F_{1} & =\frac{F(t)}{m \omega} \\
& =\frac{82 \cos 4 t}{1 \cdot 4} \\
& =\frac{41}{2} \cos 4 t
\end{aligned}
$$

Example 3 Find and plot both the steady periodic solution $x_{\mathrm{sp}}=C \cos (\omega t-\alpha)$ of the given differential equation and the actual solution $x(t)=x_{\mathrm{sp}}(t)+x_{\mathrm{tr}}(t)$ that satisfies the given initial conditions.

$$
x^{\prime \prime}+2 x^{\prime}+26 x=82 \cos 4 t ; \quad x(0)=6, \quad x^{\prime}(0)=0
$$

ANS: By Example, $\quad x_{s p}(t)=x_{p}=5 \cos 4 t+4 \sin 4 t$.
Now we find $x_{t r}(t)=x_{c}(t)$.

$$
\begin{aligned}
& r^{2}+2 r+26=0 \\
& \Rightarrow r=\frac{-2 \pm \sqrt{4-4 \times 26}}{2}=\frac{-2 \pm \sqrt{-100}}{2} \\
&=-1 \pm 5 i \\
& x_{c}(t)=e^{-t}\left(c_{1} \cos 5 t+c_{2} \sin 5 t\right)
\end{aligned}
$$

Now $x(t)=x_{c}(t)+x_{p}(t)$

$$
\Rightarrow x(t)=e^{-t}\left(c_{1} \cos 5 t+c_{2} \sin 5 t\right)+5 \cos 4 t+4 \sin 4 t
$$

As $x(0)=6 . \quad x^{r}(0)=0$.

$$
C_{1}=1 \text { and } C_{2}=-3
$$

Thus $x_{c}=e^{-t}(\cos 5 t-3 \sin 5 t)$

$$
c e^{-t} \cos (5 t-\alpha)
$$

$$
\beta=\arctan 3
$$

So $\alpha=2 \pi-\arctan 3$

$$
C=\sqrt{A^{2}+B^{2}}=\sqrt{10} \quad \approx 5.0341
$$

Thus $x(t)=\underbrace{\sqrt{10} e^{-t} \cos (5 t-5.0341)}_{x}+\underbrace{\sqrt{41} \cos (4 t-0.6747)}_{x_{\text {tr }}(t)} x_{\text {sp }}(t)$ (

Example 4 The following question gives the parameters for a forced mass-spring-dashpot system with equation $m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos \omega t$. Investigate the possibility of practical resonance of this system. In particular, find the amplitude $C(\omega)$ of steady periodic forced oscillations with frequency ω. Sketch the graph of $C(\omega)$ and find the practical resonâhce frequency ω (if any).
(a) $m=1, c=2, k=26, F_{0}=82$

The maximal value of $C(w)$
(b) $m=1, c=2, k=2, F_{0}=2$ (exercise)

ANs: We have

$$
x^{\prime \prime}+2 x^{\prime}+26 x=82 \cos w t .
$$

Assume $x_{p}=A \cos \omega t+B \sin \omega t$. then

$$
\begin{aligned}
& x_{p}^{\prime}=-A \omega \sin \omega t+B \omega \cos \omega t \\
& x_{p}^{\prime \prime}=-A \omega^{2} \cos \omega t-B \omega^{2} \sin \omega t
\end{aligned}
$$

Then $-A \omega^{2} \cos \omega t-B \omega^{2} \sin \omega t+2(-A \omega \sin \omega t+B \omega \cos \omega t)$

$$
\begin{aligned}
& \quad+26(A \cos \omega t+B \sin \omega t)=82 \cos \omega t \\
& \left\{\begin{array} { l }
{ \underline { A } (- \omega ^ { 2 } + 2 6) + 2 \underline { B } = 8 2 } \\
{ - 2 \underline { A } \omega + \underline { B } (- \omega ^ { 2 } + 2 6) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A(\omega)=-\frac{82\left(-26+\omega^{2}\right)}{\omega^{4}-48 \omega^{2}+676} \\
B(\omega)=\frac{164 \omega}{\omega^{4}-48 \omega^{2}+676}
\end{array}\right.\right. \\
& \Rightarrow C=\sqrt{A^{2}+B^{2}} \\
& \Rightarrow C(\omega)=\frac{82}{\sqrt{\omega^{4}-48 \omega^{2}+676}}
\end{aligned}
$$

Then we graph the function $C(\omega)$.
By the graph, we know that the pratical resonce occurs when

$$
\begin{aligned}
& C^{\prime}(w)=0 . \operatorname{Let} C^{\prime}(w)=0 \Rightarrow C^{\prime}(w)=\frac{-\left(64 \omega\left(w^{2}-24\right)\right.}{\left(w^{4}-48 \omega^{2}+67\right)^{1 / 2}}=0 \\
& \Rightarrow w=0 \text { or } w= \pm \sqrt{24} \text {. Then } C_{\max }=C(\sqrt{24})=\frac{82}{\sqrt{24^{2}-48.24+676}}=\cdots
\end{aligned}
$$

Yon can also use the formula (21) directly from the book. So

(b) $m=1, c=2, k=2, F_{0}=2$ (exercise)

We have $x^{\prime \prime}+2 x^{\prime}+2 x=2 \cos \omega t$

Assume $\quad x_{p}=A \cos \omega t+B \sin \omega t$
Then

$$
\begin{aligned}
& x_{p}^{\prime \prime}+2 x_{p}^{\prime}+2 x p=2 \cos \omega t \\
& \Rightarrow \quad\left\{\begin{array} { l }
{ (2 - \omega ^ { 2 }) A + 2 \omega B = 2 } \\
{ - 2 \omega A + (2 - \omega ^ { 2 }) B = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=\frac{2\left(2-\omega^{2}\right)}{4+\omega^{4}} \\
B=\frac{4 w}{4+w^{4}}
\end{array}\right.\right.
\end{aligned}
$$

Then

$$
C(\omega)=\sqrt{A^{2}+B^{2}}=\frac{2}{\sqrt{4+w^{4}}} \text { with } C(0)=1 \text {. }
$$

$C(w)$ is a olecreasing function c Thus there is no pratical resonace

